Design considerations of Paralleled GaN HEMT-based Half Bridge Power Stage

Last update: Rev.1 Aug-30-2016
Paralleling design considerations

Layout considerations for paralleling GaN

Design example of 4_x paralleled GaN power stage

Experimental results
Paralleling design considerations

What are key considerations when paralleling power switches:

<table>
<thead>
<tr>
<th>Design parameters</th>
<th>Effect on paralleling</th>
<th>Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{DS(on)}$</td>
<td>Affect static current sharing.</td>
<td>Positive temperature co-efficient for self-balancing</td>
</tr>
<tr>
<td>Gate threshold, $V_{GS(th)}$</td>
<td>Impact dynamic current sharing during turn-on and off. Lower V_{th} results in earlier turn-on and higher switching current/loss which creates positive feedback</td>
<td>Tight distribution, temperature independent or positive temperature co-efficient</td>
</tr>
<tr>
<td>Trans-conductance, g_m</td>
<td>Impact dynamic current sharing during turn-on and off.</td>
<td>Tight distribution, temperature independent or negative temperature co-efficient</td>
</tr>
<tr>
<td>Circuit design and layout</td>
<td>Balanced circuit layout are important for dynamic current sharing and stability of the paralleling operation. This is particularly critical for high speed power switches such as GaN/SiC</td>
<td>Minimize and equalize all layout parasitics to reduce circuit mismatch</td>
</tr>
<tr>
<td>Thermal</td>
<td>Affect the device temperature difference. Tj variation may cause dynamic or static current sharing issues depending on device characteristics.</td>
<td>All paralleled devices should have similar thermal resistance and installed on same heatsink for good thermal balance.</td>
</tr>
</tbody>
</table>
- GaN E-HEMT has positive temperature co-efficient $R_{DS(on)}$
- Compared to SiC, strong temperature dependency of $R_{DS(on)}$ of GaN helps the current sharing in parallel operation
V_{GS(th)} vs T_J

- GaN E-HEMT has stable gate threshold over the temperature range
- Si/SiC MOSFET V_{GS(th)} decreases with temperature:
 - Hotter drive turn-on earlier – positive feedback

GaN E-HEMT V_{GS(th)} is stable over T_J range

SiC V_{GS(th)} decreases with T_J

No noticeable change from T_J = 25 to 150°C

-24% decrease
Trans-conductance, g_m vs T_J

- GaN E-HEMT Trans-conductance g_m decreases with temperature, good for paralleling
- This characteristics, together with stable $V_{GS(th)}$, helps with dynamic current sharing and self-balancing

GaN HEMT

$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$

- I_D decreases at same V_{GS} at higher T_J
- $V_{GS(th)}$ drops and g_m slightly increases:
 - Hotter device tends to have higher switching current -> higher switching loss
 - Positive feedback, potential thermal runaway if not designed properly

SiC MOSFET

- With same V_{GS}, I_D increase at higher T_J

SJ MOSFET

- V_{th} decreases and g_m remain constant:
 - Slightly positive feedback with T_J
Effect of g_m on switching transient

- Negative feedback for self balancing in parallel:
 - $T_J \uparrow - g_m \downarrow - I_{D\text{@switching}} \downarrow - E_{on} \downarrow - T_J \downarrow$

2x GS66508T paralleled 400V/30A turn-on waveforms with different T_J

$I_{Q1} @ T_J = 25^\circ C$
$E_{on} = 92uJ$

$I_{Q2} @ T_J = 125^\circ C$
$E_{on} = 58uJ$
Circuit layout - Low inductance of GaNPX

GaNPX™ Package improves the paralleling performance and stability
- Traditional package has high source inductance that impacts paralleling performance
- GaNPX has ultra low Ls compared to traditional package
- Top-cooled T package features symmetric dual gate pads for easier layout

GaNPX T Package
GS66516T (650V/25mΩ)

Ansys Q3D 3D modeling of GS66516T

TO-247 Package inductance
Ls = ~10-15nH

Package Source inductance
Ls=0.05nH
Circuit layout - advantages of GaNPX dual gate

- Dual gate reduces the total gate drive loop in paralleling design
- Easier to make symmetric gate drive layout
- Reduce total layout footprint area

2x TO-247 Parallel layout

2x GS66516T Parallel layout
Key design considerations for paralleling GaN

Compared to other technologies:

- GaN Systems E-HEMT characteristic is inherently good fit for paralleling as discussed.
 - The $R_{DS(on)}$ and GaN transfer characteristics provide strong negative feedback to self balance and compensate device and circuit mismatch

- **Circuit layout is most critical to GaN: Ensure successful paralleling and optimum dynamic performance.**

- Therefore, this presentation will focus on gate drive and circuit layout discussion for dynamic performance of paralleling GaN:
 - The impact of circuit parasitics on paralleling was analyzed
 - A half bridge power stage with 4x paralleled GaN 650V/160A HEMTs was designed and validated by experimental test
Contents

- Paralleling design considerations
- Layout considerations for paralleling GaN
- Design example of 4x paralleled GaN power stage
- Experimental results
Key layout parasitics

Critical parasitic parameters that have high impact on GaN paralleling:

\(\mathbf{L_{G1-4}} \& \mathbf{L_{S1-4}}: \text{gate/source inductance} \)

Unbalanced \(L_G/L_S \) increases the gate ringing and risk of oscillation

- Equalize \(L_G/L_S \) using star connection and keep as low as possible
- Individual \(R_G/R_S \) is recommended to reduce gate ringing among paralleled devices

\(\mathbf{L_{CS1-4}}: \text{Common source inductance} \)

- Defined as any inductance that couples power loop switching noise (\(L*di/dt \)) into the gate drive circuit
- Including the shared/common source inductance and mutual inductance between power and drive loops
- Feedback switching \(di/dt \) to \(V_{GS} \), impact gate drive stability and performance
- Minimize as much as possible.
Gate drive design for paralleled GaN

- For high current paralleling design, a small negative gate drive turn-off bias is recommended for lower turn-off loss and more robust gate drive. Recommend to use -3V to -5V with synchronous driving for optimum efficiency.
- Create bipolar gate drive from single power supply using a 6.2V Zener. Negative gate drive bias (VEE) is defined by PS1 output – Vzener(6V)
- Use small values (1-2Ω) for distributed gate and source resistance: R3/R5 and R6/R7
- Total turn-on $R_{G_ON} = R_4 + R_3(R5)$. Turn off $R_{G_OFF} = R_3(R5) + R_6\ (R7)$
Flux cancelling for lower inductance

- When two adjacent conductors are located close with opposite current direction, magnetic flux generated by two current flows will cancel each other in the region highlighted.
- This magnetic flux canceling effect can lower the parasitic inductance.
 - Arrange the layout so that high-frequency current flows in opposite direction on two adjacent PCB layers
Flux Cancelling Design for half bridge layout

Top Layer: place GaN HEMTs
Mid_L1: BUS+ -> Drain_High ; Source_Low -> BUS-
Mid_L2: Source_High -> Drain_Low
Mid_L3: BUS+ -> Drain_High ; Source_Low -> BUS-
Mid_L4: Source_High -> Drain_Low
Bottom Layer: place Gate Driver Circuit and Decoupling Caps

High Frequency Current alternates direction on Each Layer to provide flux canceling effect
Comparison with Benchmark

GaN Systems Solution: only 25% L_{Loop} of the Best Counterparts:
- Low inductance GaNPX Packaging
- Flux cancelling PCB design

Contents

- Paralleling design considerations
- Layout considerations for paralleling GaN
- Design example of 4x paralleled GaN power stage
- Experimental results
4x GS66516T Paralleling Test Board – Top View

650V/240A high Power stage design using discrete GaN EHEMTs

- DC Bus Capacitor
- Low Side GaN E-HEMTs
- High Side GaN E-HEMTs

Dimensions:
- 4cm width
- 3cm height
Layout of 4x paralleled GaN power stage
Optimum Paralleling Layout for GaN HEMT (4x GS66516T)

Top side with 4x GS66516T in half bridge
- BUS+
- HV decoupling Cap
- DC Link Cap

Bot side with gate driver
- Gate driver
- Gate driver

Note symmetric gate drive layout:
- Utilize the dual gate on GS66516T GaNPX
- Gate resistor on each gate
Contents

- Paralleling design considerations
- Layout considerations for paralleling GaN
- Design example of 4x paralleled GaN power stage
- Experimental results
400V/240A double pulse hard switching test waveforms

DUT: 4x GS66516T in parallel; Freewheeling: 4x GS66516T in parallel
Condition: \(V_{\text{BUS}}=400\text{V}, I_{\text{DS_ON}}=231\text{A}, I_{\text{DS_OFF}}=240\text{A}, V_{\text{GS}}=+6.8\text{V}/-5\text{V}, R_{\text{G_ON}}=4.55\text{ohm}, R_{\text{G_OFF}}=1.25\text{ ohm}. \)

- No-Derating paralleling of GaN HEMTs. Hard switched up to full rated current with clean waveform.
- 400V/240A Hard Switching Capability with ~200V \(V_{DS} \) Margin

Experimental Waveform

- **On:** \(\frac{dv}{dt}=19.5\text{V}/\text{nS} \)
- **Off:** \(\frac{dv}{dt}=59.6\text{V}/\text{nS} \)

Measurement Setup: Lecroy WaveSurfer 10M Oscilloscope, HVD3106 Differential Probe(C1), CWT-3LFB mini Rogowski Coil(C2)
Summary

- Paralleling discrete GaN is desired to achieve higher power output.
- GaN Systems E-HEMT device characteristics are inherently fit for paralleling:
 - Positive $R_{DS(ON)}$ temperature coefficient
 - Stable gate threshold over the temperature range
 - Negative tempco of g_m
 - Low inductance GaNPX package for minimum circuit mismatch

- Layout is critical for paralleling high speed GaN HEMT:
 - Low and balanced parasitic inductance on the power and gate drive loop. Equal length of gate drive layout and optimum gate driver circuit

- Summary
 - Provided practical design guide on how to parallel high speed GaN HEMT devices
 - Showed a design layout example of 4x paralleled GaN E-HEMT half bridge power stage
 - Hardware was built and GaN E-HEMT paralleled operation has been validated up to the rated current under hard switching test (400V/240A)